contactanos


    Tesis

    Desarrollo e inclusión de modelos para nuevos materiales destinados a combustibles de tecnología avanzada en el Código DIONISIO

    2025



    Tesista

    Matías Ezequiel LOZA PERALTA

    Ingeniero en Materiales. Instituto Sabato. UNSAM, CNEA-UNSAM – Argentina
    Magister en Ciencia y tecnología de Materiales. Instituto Sabato. UNSAM, CNEA-UNSAM – Argentina
    Doctor en Ciencia y Tecnología, Mención Física. Instituto Sabato. UNSAM, CNEA - Argentina

    Directores

    Dr. Alejandro Soba - Argentina

    Lugar de realización

    Sección Códigos y Modelos, Subgerencia Desarrollo de Tecnología de Combustibles para Reactores de Potencia y Experimentales, Gerencia Ciclo del Combustible Nuclear, CAC, CNEA- Argentina

    Fecha Defensa16/04/2025
    Jurado

    Ing. Luis Alberto VAZQUEZ. CNEA - Argentina

    Dra. Marcela Ines MIRANDOU. CNEA - Argentina

    Dr. Esteban Alejandro ESTEVEZ. CNEA - Argentina

    Título completo

    Desarrollo e inclusión de modelos para nuevos materiales destinados a combustibles de tecnología avanzada en el Código DIONISIO

    Resumen

    La sección Códigos y Modelos de la Gerencia Ciclo del Combustible Nuclear ha venido desarrollando un código de combustible denominado DIONISIO, cuya finalidad es la simulación del comportamiento de una barra combustible típica de un reactor nuclear de potencia. Así mismo, se ha extendido el rango de predicción del código a escenarios de accidente, en particular los provocados por pérdida de refrigerante, denominados LOCA por su sigla en inglés (Loss Of Coolant Accident). Con este objetivo, se elaboraron diversos modelos que describen el comportamiento del fluido refrigerante en los reactores de potencia, así como los que tienen lugar en la vaina de la barra combustible, típicamente de la aleación Zry, como su oxidación y el consiguiente crecimiento de diferentes fases en ella (ZrO2, -Zr, -Zr) a altas temperaturas, la captura y liberación de hidrógeno por la disociación de las moléculas de agua del refrigerante. Asimismo, se incorporaron modelos para describir la deformación mecánica macroscópica de la vaina en condiciones de gran exigencia, con englobamiento (ballooning) y su posible rotura catastrófica (burst).

    En estrecha relación con estos mencionados desarrollos, y a raíz de distintos factores de la actualidad de la tecnología nuclear, se postula extender el funcionamiento del código a nuevos combustibles, de aquellos de los denominados ATF (Advance Technological Fuels) o combustibles de tecnología avanzada. Estos combustibles son construidos con materiales novedosos o materiales a los que se incluye una mejora sustancial desde el punto de vista de especificaciones relacionadas tanto a la seguridad como a la sustentabilidad. Los materiales ATF son parte de los futuros reactores nucleares, aquellos de los denominados de Generación III+ y Generación IV, que buscan, además de aumentar la eficiencia energética, promover la sustentabilidad de la energía nuclear, mejorando siempre la seguridad de la misma. Debido a este escenario futuro, desarrollar una librería de materiales ATF para un código combustible como DIONISIO es un paso necesario y fundamental desde el punto de vista tecnológico, ya que aunque la Argentina no posea desarrollos de combustibles ATF actualmente, es de esperar que en un futuro los tenga, si es que desea mantenerse como una de las pocas naciones que producen tecnología nuclear del planeta.

    Complete Title

    Development and inclusion of models for new materials for advanced technology fuels in the DIONISIO Code

    Abstract

    The Codes and Models Section of the Nuclear Fuels Management has been developing a fuel code called DIONISIO, whose purpose is to simulate the behavior of a typical fuel rod of a nuclear power reactor. The code currently has more than 70 interconnected models that address most of the phenomena that occur under irradiation under normal reactor operating conditions. Some of the phenomena that the code predicts are the thermal and mechanical behavior, the release of fission gases, the swelling and densification of the tablets, the thermohydraulic conditions of the channel surrounding the bar, the growth of the oxide layer, among others. Likewise, the code has a module to simulate the behavior of plate-type fuels, a design that is commonly used in research reactors.

    Likewise, and through another doctoral work completed in 2021, the code's prediction range has been extended to accident scenarios, particularly those caused by loss of coolant, called LOCA by its acronym in English (Loss Of Coolant Accident). With this objective, several models were developed to describe the behavior of the cooling fluid in the power reactors, as well as those that take place in the fuel rod cladding, typically Zircaloy alloy, such as its oxidation and the consequent growth of different phases (ZrO2, alpha- Zr, beta- Zr), at high temperatures, and the capture and release of hydrogen from the dissociation of water molecules from the coolant. Likewise, models were incorporated to describe the macroscopic mechanical deformation of the cladding under highly demanding conditions, like the ballooning and the possible catastrophic rupture (burst).

    The development of this complex module involved, first, the separate development and evaluation of models to describe the different physical processes and, subsequently, their incorporation into the code as new particular subroutines, respecting the architecture, mode of execution and versatility of the rest of the code. The new accident module allows analyzing and quantifies the behavior of the refrigerant fluid, whether in single or double phase, evaluating at every moment the system pressure, the refrigerant flow and the vapor fraction in the different axial positions of the channel. It is noted that, in an accident context, the rapid variation experienced by the conditions to which the fuel rod is subjected gives rise to greater complexity in the calculation, since certain simplifying assumptions that are used in normal operating conditions must be abandoned.

    In close relation to these aforementioned developments, and as a result of different current factors in nuclear technology, it is proposed to extend the operation of the code to new fuels, those called ATF (Advance Technological Fuels). These fuels are built with novel materials or materials that include a substantial improvement from the point of view of specifications related to both safety and sustainability.

    ATF materials are part of future nuclear reactors, those called Generation III+ and Generation IV, which seek, in addition to increasing energy efficiency, to promote the sustainability of nuclear energy, always improving its safety. In this sense, one of the first definitions of ATF materials arises, any material that increase the safety range of the reactors that use them, either because their properties allow working in less demanding conditions, or because given a hypothetical accident, these materials provide better responses to extreme requests.

    Due to this future scenario, developing an ATF materials library for a fuel code like DIONISIO is a necessary and fundamental step from a technological point of view, since although Argentina does not currently have ATF fuel developments, it is expected that in a next future will have them, if we want to remain be one of the few nations that produce nuclear technology on the planet.

    To validate the module, different experiments that reproduce in the laboratory situations of both normal operation and LOCA-type accidents were simulated. These results gave rise to presentations at conferences and publications, both national and international, and allow the group to participate in an international project for intercomparison of codes, as is the case of the ATF-TS (Advance technological Fuel-Test Suite) program, organized by the IAEA, during the years 2020-24. In the last chapter of this thesis, in addition to the results obtained by DIONISIO on these experiments, some of the results to be included in the final ATF-TS report are presented, where the predictions of the code are compared with experimental results and with those provided by the rest of the project participants. There, the good performance of the code is checked using new materials both under normal conditions and in response to hypothetical accident cases.

    volver al listado

    Bajate la app del
    Instituto Sabato

    Una fuente de información útil y un canal de comunicación para toda la comunidad universitaria.

    PROXIMAMENTE